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Uses of Modeling
 A model is designed to represent reality in such a way that 

the modeler can do one of several things:

 Quickly estimate certain aspects of a system (screening 
models, analytical solutions, ‘back of the envelope’ 
calculations) 

 Determine the causes of an observed condition (flow 
direction, contamination, subsidence, flooding)

 Predict the effects of changes to a system (pumping, 
remediation, development, waste disposal)

Types of Ground Water Flow 
Models
 Analytical Models (Exp and ERF functions)

 1-D solution, Ogata and Banks (1961)

 2-D solution, Wilson and Miller (1978)

 3-D solutions, Domenico & Schwartz (1990)

 Numerical Models (Solved over a grid - FDE)

 Flow-only models in 3-D (MODFLOW)

 MODPATH - allows tracking of particles in 2-D placed 
in flow field produced from MODFLOW

Grid - Hydraulic Conductivity

Governing Equation for Flow
 For two-dimensional transient flow conditions
 Transient means that the water level changes with time

 Steady state means it is constant in time.  

 S = storativity [unitless], 

 Q = recharge or withdrawal per unit area [L/T]

 T = transmissivity [L2/T]
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Poisson’s Equation
 The basic flow equation in a homogeneous, confined,  

2-D aquifer at steady-state (S = 0), with sources and/or 
sinks

 Can be solved analytically or numerically
 Theis’ Analytical solution in cylindrical coordinates

 Gauss-Seidel with Successive Over-Relaxation (SOR)
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Laplace’s Equation
 If there are no source/sink terms, Poisson’s equation 

reduces to Laplace’s Equation

 Can also be solved analytically or numerically

 Gauss-Seidel Iteration method

 Successive Over Relaxation method

 Solutions are generally smooth and well-behaved
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Laplace Numerical Solution
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Numerical Solutions

 For complex layered, heterogeneous aquifers, a 
numerical approximation is required in non-uniform 
flow

 Several types — Finite Difference, Finite Element, and 
Method of Characteristics

 Finite difference approximations involve applying 
Taylor’s expansions to the equations (flow and 
transport) and approximating the derivatives in the 
equation

 Other methods involve different approximations, but all 
are based generally on the Taylor expansion

Taylor’s Expansion from Calculus

Taylor’s Series provides a means to predict a function f(x) 
value at one point in terms of a function value and its 
derivatives at another point.  

Zero Order approximation might be f(xi+1) = f(xi)

Value at new point is same as at old point

First Order approximation is f(xi+1) = f(xi) + f’(xi)(xi+1 – xi)

Straight line projection to next point

Second Order approximation captures curvature  

f(xi+1) = f(xi) + f’(xi)(xi+1 – xi) + f’’(xi) (xi+1  – xi)
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Approximation of f(x) by various 
orders

Zero Order

First Order

Second Order
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Taylor’s Expansion from Calculus

Any function h(x) can be expressed as an infinite 
series:


h(x  Dx)  h(x) Dxh' (x)

Dx
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h(x  Dx) h(x) Dxh' (x)

Dx2
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Where h’(x) is the first derivative and h’’(x) is the second derivative 

and so on.



Taylor’s Expansion for Second 
Derivative

Adding the above two eqns, and neglecting all the 
higher terms, and rearranging terms gives a useful 
approximation for h’’(x) :
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True Function h(x)

Taylor’s Expansion for dh/dx
Neglecting second and all higher powers, and 
rearranging terms gives a forward or backward 
difference approximation for the first derivative or 
h’(x) :
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Control Volume Numerical Solutions to Laplace’s 
Equation

 Assume ∆x = ∆y [regular square grid]

 Represent h(xi,yj) = hi,j

 h(xi+∆x, yj+∆y) = hi+1,j+1, 

Thus replacing terms in Laplace, the F.D.E. becomes 

 Do the same for the ‘j’ direction, and you have the following:
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Approximation to Laplace’s Eqn.
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Summing terms and solving for hi,j gives: 
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Application to a Simple 3x3 Grid
 Start with boundary conditions and 

initial estimate for h, assume h1 = h2 = h3 

= h4 = 0

 Get a new estimate for h1, call it h1
m+1

 h1
m+1 = (top + right + bottom + left)/4

 h1
m+1 = {0    +   h2 +   h3 + 0}/4

 Repeat four internal points - 2, 3, and 4 
using same four-star average calculation
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Application to a grid
h1

m+1 = {0 + h2
m + h3

m + 0    } /4

h2
m+1 = {0 +   0 + h4

m + h1
m } /4

h3
m+1 = {h1

m + h4
m + 1 + 0    } /4

h4
m+1 = {h2

m + 0 + 1 + h3
m } /4

 Use the initial values and boundary 
conditions for the first approximation

 Use the updated values (m+1) for 
further approximations (m+2)

 Continue  until the numbers don’t 
change much (convergence!)
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FDE for Laplace - EXCEL
node # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Iteration 0 0 0 0 0 0 0 0 0 0  1 1

1 0.0 0.0 0.0 0.0000 0.0000 0.0 0.0 0.2500 0.2500 0.0 1.0 1.0

2 0.0 0.0 0.0 0.0625 0.0625 0.0 0.0 0.3125 0.3125 0.0 1.0 1.0

3 0.0 0.0 0.0 0.0938 0.0938 0.0 0.0 0.3438 0.3438 0.0 1.0 1.0

4 0.0 0.0 0.0 0.1094 0.1094 0.0 0.0 0.3594 0.3594 0.0 1.0 1.0

5 0.0 0.0 0.0 0.1172 0.1172 0.0 0.0 0.3672 0.3672 0.0 1.0 1.0

6 0.0 0.0 0.0 0.1211 0.1211 0.0 0.0 0.3711 0.3711 0.0 1.0 1.0

7 0.0 0.0 0.0 0.1230 0.1230 0.0 0.0 0.3730 0.3730 0.0 1.0 1.0

8 0.0 0.0 0.0 0.1240 0.1240 0.0 0.0 0.3740 0.3740 0.0 1.0 1.0

9 0.0 0.0 0.0 0.1245 0.1245 0.0 0.0 0.3745 0.3745 0.0 1.0 1.0

10 0.0 0.0 0.0 0.1248 0.1248 0.0 0.0 0.3748 0.3748 0.0 1.0 1.0

11 0.0 0.0 0.0 0.1249 0.1249 0.0 0.0 0.3749 0.3749 0.0 1.0 1.0

12 0.0 0.0 0.0 0.1249 0.1249 0.0 0.0 0.3749 0.3749 0.0 1.0 1.0

13 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

14 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

Equations are programmed in Nodes 6, 7, 10, and 11.
All other nodes are boundary conditions, and do not change.
Cells 1,4,13, and 16 are the corners, and are not used in the calculations.

1 2 3 4 0 0 0 0
5 6 7 8 The grid has this 0 0.13 0.13 0
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Convergence Criteria
 Convergence for a flow code requires that the change 

in the solution at each point be less than a specified 
target, called the convergence criterion, or sometimes 

epsilon, 

 If  is too large, convergence will occur before a 
solution is reached

 If  is too small, convergence may take very long, or be 
impossible due to oscillation

 There is more than one way to define convergence, 
including global measures, local measures, etc.

Gauss-Seidel Method
 Uses partially completed iteration to estimate values 

for the rest of the iteration. 

 h1
m+1 = {0 + h2

m + h3
m + 0    }/4

 h2
m+1 = {0 +   0 + h4

m + h1
m }/4

 h3
m+1 = {h1

m+1 + h4
m + 1 + 0    }/4

 h4
m+1 = {h2

m+1 + 0 + 1 + h3
m }/4

 Use m+1 update iteration values for h1 and h2 when 

computing h3 and h4

 Results in faster convergence over a large grid

Gauss-Seidel 
node # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Iteration 0 0 0 0 0 0 0 0 0 0  1 1

1 0.0 0.0 0.0 0.0000 0.0000 0.0 0.0 0.2500 0.2500 0.0 1.0 1.0

2 0.0 0.0 0.0 0.0625 0.0625 0.0 0.0 0.3281 0.3281 0.0 1.0 1.0

3 0.0 0.0 0.0 0.0977 0.0977 0.0 0.0 0.3564 0.3564 0.0 1.0 1.0

4 0.0 0.0 0.0 0.1135 0.1135 0.0 0.0 0.3675 0.3675 0.0 1.0 1.0

5 0.0 0.0 0.0 0.1203 0.1203 0.0 0.0 0.3719 0.3719 0.0 1.0 1.0

6 0.0 0.0 0.0 0.1230 0.1230 0.0 0.0 0.3737 0.3737 0.0 1.0 1.0

7 0.0 0.0 0.0 0.1242 0.1242 0.0 0.0 0.3745 0.3745 0.0 1.0 1.0

8 0.0 0.0 0.0 0.1247 0.1247 0.0 0.0 0.3748 0.3748 0.0 1.0 1.0

9 0.0 0.0 0.0 0.1249 0.1249 0.0 0.0 0.3749 0.3749 0.0 1.0 1.0

10 0.0 0.0 0.0 0.1249 0.1249 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

11 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

12 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

13 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

14 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

Equations are programmed in Nodes 6, 7, 10, and 11.
All other nodes are boundary conditions, and do not change.
Cells 1,4,13, and 16 are the corners, and are not used in the calculations.
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Successive Over-Relaxation - SOR
 To speed up the convergence, overshoot the standard 

model.  

 Defining the Residual, c = hi,j
m+1* – hi,j

m

 Using: 

hi,j
m+1 =  hi,j

m + c  =  (1– ) hi,j
m + hi,j

m+1*, 

where  is the relaxation factor and hi,j
m+1* is given by the 

Gauss-Seidel approximation, we get:

 hi,j
m+1=(1-)hi,j

m +(/4)(hi-1,j
m+1 + hi,j-1

m+1 + hi+1,j
m + hi,j+1

m )

 If  = 1, reduces to Gauss-Seidel

 If 1 < < 2, the method is over-relaxed - usually ~ 1.4 - 1.5



SOR - Marked Improvement
node # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Iteration 0 0 0 0 0 0 0 0 0 0  1 1

1 0.0 0.0 0.0 0.0000 0.0000 0.0 0.0 0.3500 0.3500 0.0 1.0 1.0

2 0.0 0.0 0.0 0.1225 0.1225 0.0 0.0 0.3754 0.3754 0.0 1.0 1.0

3 0.0 0.0 0.0 0.1253 0.1253 0.0 0.0 0.3751 0.3751 0.0 1.0 1.0

4 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

5 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

6 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

7 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

8 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

9 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

10 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

11 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

12 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

13 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

14 0.0 0.0 0.0 0.1250 0.1250 0.0 0.0 0.3750 0.3750 0.0 1.0 1.0

Equations are programmed in Nodes 6, 7, 10, and 11.
All other nodes are boundary conditions, and do not change.
Cells 1,4,13, and 16 are the corners, and are not used in the calculations.
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9 10 11 12 orientation in real life. 0 0.38 0.38 0
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Numerical Simulation Models

Numerical models solve approximations of the governing

equations of flow and transport - over a grid system

 Based on a grid or mesh laid over the study site

 Helps organize large datasets into logical units

 Data required includes boundary conditions, hydraulic 
conductivity, thickness, pump rates, recharge, etc.)

 Can be computationally intensive

 Can be applied to actual field sites to help understand 
complex hydrogeologic interrelationships.

Often-Used Numerical Models

MODFLOW (1988) - USGS flow model for 3-D aquifers

MODPATH - flow line model for depicting streamlines 

MOC (1988) - USGS 2-D advection/dispersion code

MT3D (1990, 1998) - 3-D transport code works with 
MODFLOW

RT3D (1998) - 3-D transport chlorinated - MODFLOW

BIOPLUME II, III (1987, 1998) - authored at Rice Univ 2-
D based on the MOC procedures.

Numerical Solution of Equations
Numerically -- H or C is approximated at each 
point of a computational domain (may be a regular 
grid or irregular)
 Solution is very general

 May require intensive computational effort to get the 
desired resolution

 Subject to numerical difficulties such as convergence 
problems and numerical dispersion

 Generally, flow and transport are solved in separate 
independent steps (except in density-dependent or 
multi-phase flow situations)

MODFLOW Introduction
 Written in the 1984 and updated in 1988  

 Solves governing equations of flow for a full 3-D aquifer 
system with variable K, b, recharge, drains, rivers, and 
pumping wells. 

 Withdrawal and injection wells (rates may change with time)

 Constant head boundaries or regions (ponds/rivers/fixed 
heads)

 No-flow boundaries or regions (bedrock outcrops/water 
divides)

 Regions of diffuse recharge or discharge (rainfall)

 Observation wells

MODFLOW Features



MODFLOW
MODFLOW is a modular 3-D finite-difference flow code developed 

by the U.S. Geological Survey to simulate saturated flow through a 
layered porous media.  The PDE solved is for h(x,y,z,t):

 where Kxx, Kyy, and Kzz are defined as the hydraulic 
conductivity along the x, y, and z coordinate axis, h
represents the potentiometric head, W is the 
volumetric flux per unit volume being pumped, Ss is 
the specific storage of the porous material and t is 
time. 
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MODFLOW Features

 MODLOW consists of a main program and a series 
of independent subroutines grouped into packages. 

 Each package controls with a specific feature of the 
hydrologic system, such as wells, drains, and 
recharge. The division of the program into 
packages allows the user to analyze the specific 
hydrologic feature of the model independently. 

MODFLOW Features
 MODFLOW is one of the most versatile and widely 

accepted groundwater models

 It is particularly good in heterogeneous regions 
because it allows for vertical interchange between 
layers, as well as horizontal flow within the aquifers.

 It also allows for variable grids to speed computation.

 It has been applied to model thousands of field sites 
containing a number of different contaminants and for 
a number of different remediation applications. 

Solution Methods
 MODFLOW is an iterative numerical solver (SIP or 

SOR). 

 The initial head values are provided and the these 
heads are gradually changed through a series of time 
steps, in the case of a transient model run,  until the 
governing equation is satisfied.  Time steps can be 
variable to speed output.

 The primary output from the model is the head 
distribution in x, y, and z, which can then be used by a 
transport model. 

 In addition, a volumetric water budget is provided as a 
check on the numerical accuracy of the simulation. 

MODFLOW - Input to Transport 
Models
 Designed to create modern GUI to ease large data 

entry and output graphical manipulation for 
applications to complex field sites

 GMS - 1995 

 Visual MODFLOW

 Ground Water Vistas 

PLUME 

visualization

MODPATH - Pathlines
 Designed to use heads from MODFLOW and linear 

interpolation to compute velocity Vx and or Vy.

 Particles can be placed in areas of known or 
suspected source concentrations in order to create 
possible tracks of contaminants in space and time -
streaklines

Path results after two time steps



MODPATH
 Designed to use heads from MODFLOW and linear 

interpolation to compute velocity Vx in the x 
direction:

 Vx = (1-fx)Vx(i -1/2) +fxVx(i +1/2)

 Where fx = (xp - x(i-1/2) )/ Dxi,j

 And xp is the x coordinate of the particle 

i, j (i + 1/2, j)(i - 1/2, j)

Particle 

Location

In Grid

Vx
Dx

Pathlines – Sunrise example

Contaminant Transport in 2-D
CB
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C = Concentration of Solute [M/L3]

DIJ = Dispersion Coefficient [L2/T] - x and y

B = Thickness of Aquifer [L]

C’ = Concentration in Sink Well [M/L3]

W = Flow in Source or Sink [L3/T]

E = Porosity of Aquifer [unitless]

VI = Velocity in ‘I’ Direction [L/T] - x and y

2-D CONTAMINANT TRANSPORT

Domenico and Schwartz (1990)
 3-D solutions for several geometries (listed in 

Bedient et al. 1999, Section 6.8) - spreadsheets exist

 Generally a vertical plane, constant concentration 
source.
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Method of Characteristics USGS 
(MOC)
 Written for USGS by Konikow and 

Bredehoeft in 1978

 Solves flow equations with Alternating 
Direction Implicit (ADI) method

 Solves transport equations via particle 
tracking method and finite difference

 Using velocities calculated from the flow 
solution, vx = kx (∆h/∆x), particles are 
moved

 Concentrations are based on the average 
concentration of all particles in a cell at the 
end of the time step

Velocity



MOC Concepts
 Partial Differential Equation replaced by equivalent set 

of ODEs called ‘characteristic equations’ 
(approximated with finite difference)

 Particle in a cell is moved a distance proportional to 
the seepage velocity within the cell

 Accounts for concentration change due to advection

 Remainder of governing equation solved by finite 
difference methods

 Accounts for concentration change due to dispersion, 
changes in saturated thickness, and fluid sources

MOC/BIOPLUME II Capabilities
 Can simulate effects of natural or enhanced 

biodegradation:
 Fast-equilibrium biodegradation

 First-order biodegradation

 Monod kinetics 

 Withdrawal and injection wells (pump and treat 
systems)

 Injection wells for oxygen enhancement

 Observation wells within and outside plume area

BIOPLUME II Concepts
 Can simulate effects of natural or enhanced 

biodegradation

 Adjustment is made at each time step in numerical 
grid

Background D.O.

Initial Hydrocarbon
Concentration

Reduced Oxygen
Concentration

Oxygen 
Depletion

Reduced Hydrocarbon
Concentration

+ =

Concentrations

Calibration, Validation, and 
Sensitivity Analysis

 Calibration is the process of making the model match 
real-world data.  Involves making several model runs, 
varying parameters until the ‘best fit’ is achieved. 

 Validation is the process of confirming the validity of 
your calibration by using the model to fit an independent 
set of data.

 Sensitivity Analysis is the process of changing 
parameters to see the effects on the model results.  The 
most sensitive parameters need to be checked for 
accuracy to ensure the best model.


